Sunday, September 16, 2012

The free energy is lowest at equilibrium

This is Figure 10.1 from Dill and Bromberg's Molecular Driving Forces, which is my favorite book on statistical mechanics. It is a beautiful example from a beautiful book.

A system is at equilibrium when its free energy is a minimum
$$dA=0$$ Here I use the Helmholtz free energy $$A=U-TS$$ but the same is true for the Gibbs free energy. Let's explore this for the simple four-bead polymer shown in the figure above. Since I have already defined the probabilities of the folded ($p_f$) and unfolded ($p_{uf}$) macrostates in a previous post it is easiest to start with the expression for the internal energy ($U$) and entropy ($S$) in terms if probabilities. $$U=N\left<\varepsilon\right>=N\sum_i^{\begin{array}{ c }\text{micro} \\ \text{states} \\ \end{array}} \varepsilon_ip_i$$ $$S=-Nk\left<ln(p)\right>=-Nk\sum_i^{\begin{array}{ c }\text{micro} \\ \text{states} \\ \end{array}} p_i\ln(p_i)$$This results in $$U=N\varepsilon_0 p_{uf}\text{ and }S=-Nk\left( p_f\ln(p_f)+p_{uf}\ln\left(\frac{p_{uf}}{4}\right) \right)$$Combining these two terms and using the fact that probabilities must sum to 1 ($p_f+p_{uf}=1$), the free energy can be written as $$A=N\varepsilon_0 (1-p_{f})+TNk\left( p_f\ln(p_f)+(1-p_{f})\ln\left(\frac{(1-p_{f})}{4}\right) \right)$$This allows me to plot $A$ as a function of $p_f$, using $T$ = 298.15 K, $N=N_A$, and $N_A\varepsilon_0=2.5$ kJ/mol
As you can see, the free energy is a minimum when the probability of the folded state is about 0.4  or 0.407 to be more precise - precisely the value predicted by the Boltzmann distribution: $p_f=1/q$.

The total entropy is a maximum at equilibrium
This figure shows the internal energy and entropy contributions to the free energy as function on $p_f$. 

When seeing this plot for the first time many people are surprised that the entropy is not a maximum (i.e. $-TS$ is not a minimum) at equilibrium.  Does this simple system violate the second law of thermodynamics? No! I am plotting the entropy of the system and not the total entropy that the second law refers to.  The total entropy is indeed a maximum at equilibrium:$$dA_{\text{system}}=0\\dU_{\text{system}}-TdS_{\text{system}}=0\\-\frac{dU_{\text{system}}}{T}+dS_{\text{system}}=0\\ \frac{dq_{\text{surroundings}}}{T}+dS_{\text{system}}=0\\ dS_{\text{surroundings}}+dS_{\text{system}}=0\\dS_{\text{total}}=0$$ Increasing the number of molecules in the unfolded state requires energy ($U$ increases at $p_f$ decreases) and this energy has to come from somewhere.  It is transferred to the system from the surroundings at heat: $$dq_{\text{surroundings}}=-dU_{\text{system}}$$and this lowers the entropy of the surroundings by$$dS_{\text{surroundings}}=\frac{dq_{\text{surroundings}}}{T}$$The entropy of the system is highest ($-TS$ is lowest) when $p_f=\frac{1}{5}$, i.e. when all microstates are equally populated because this leads to the highest multiplicity ($W_{\text{system}}$):$$S_{\text{system}}=k\ln\left(\frac{N!}{N_f!N_{uf1}!N_{uf2}!N_{uf3}!N_{uf4}!}\right)$$

Some technical stuff you can skip if you want
Another reason you might think $S_{\text{system}}$ should be a maximum at equilibrium is that  the Boltzmann distribution is derived by maximizing the entropy:$$\frac{\partial S}{\partial N_i}=0\text{ for }i=1,2,3.,..$$However, what is actually maximized is a Lagrangian function: $$L=S+\alpha \left( N-\sum_i^{\begin{array}{ c }\text{micro} \\ \text{states} \\ \end{array}}N_i \right)-\beta \left( U-\sum_i^{\begin{array}{ c }\text{micro} \\ \text{states} \\ \end{array}}\varepsilon_i N_i \right) $$that conserves the number of particles ($N$) and the internal energy ($U$).  Because of the latter requirement $$\frac{\partial L}{\partial N_i}=0\text{ for }i=1,2,3.,..$$ maximizes $S_{\text{total}}$ rather than $S_{\text{system}}$ because it is only the total internal energy that is conserved: $$dU_{\text{system}}+dU_{\text{surroundings}}=0$$

Creative Commons License
This work (except the first figure which is © by Garland Science) is licensed under a Creative Commons Attribution 3.0 Unported License.   

No comments: